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We study partially occupied lattice systems of classical magnetic dipoles which point along randomly
oriented axes. Only dipolar interactions are taken into account. The aim of the model is to mimic collective

effects in disordered assemblies of magnetic nanoparticles. From tempered Monte Carlo simulations, we obtain
the following equilibrium results. The zero-temperature entropy approximately vanishes. Below a temperature
T., given by kgT,=(0.95*0.1)xe,, where g, is a nearest-neighbor dipole-dipole interaction energy and x is the

site occupancy rate, we find a spin-glass phase. In it, (1) the mean value (|g
decreases algebraically with system size N as N increases, and (2) d|q|==0.5¢

where dlg| is the root-mean-square deviation of |g].
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I. INTRODUCTION

Magnetic dipole-dipole interactions play a fundamental
role in magnetic phenomena. Their long-range nature gives
rise to magnetic domains in ferromagnets. On the other hand,
because of their weak strength, they usually play an insig-
nificant role in determining the Curie temperatures and in
critical phenomena of atomic crystals. In assemblies of mag-
netic nanoparticles (NPs), things can be very different. Be-
cause ferromagnetic NPs of up to thousands of Bohr magne-
tons have a single magnetic domain,' dipole-dipole
interactions among such NPs can be very large and can thus
dominate their collective behavior.2 Often, both the orienta-
tion of the crystallites of which NPs are made as well as their
positions are disordered in the assembly, and therefore be-
have much as a system of interacting magnetic dipoles with
randomly oriented magnetic easy axes. These systems of ran-
dom axes dipoles (RADs) are clearly frustrated, since two
different dipoles give rise to magnetic fields at any given
point which are not in general collinear. The sort of time-
dependent behavior that is expected of spin glasses has been
observed in experiments®™ as well as in simulations®~'% of
disordered assemblies of magnetic NPs. Because these sys-
tems evolve in time very slowly (exhibiting aging®® and
other memory!! effects), evidence for a thermodynamic spin-
glass phase in them is more difficult to come by. One of us
has recently given numerical evidence for the existence of an
equilibrium spin-glass phase for a fully occupied lattice of
dipoles with randomly oriented axes.'”> On the other hand,
numerical evidence against such a phase has been given for
site-diluted lattice systems of magnetic dipoles with parallel
axes.!?

One might expect site-diluted systems of RADs to behave
as fully occupied ones, and therefore to have equilibrium
spin-glass phases at low temperatures. For support of this
expectation, consider rescaling distances in a dilute system
of RADs. Because dipole-dipole interactions decay with dis-
tance r as r>, letting r— br merely redefines dipole-dipole
interaction energies as e;,— b g, This would imply all
physical quantities for systems of RADs in three dimensions
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), where g is the spin overlap,
g|)NT/x, independently of N,

PACS number(s): 75.10.Nr, 75.10.Hk, 75.40.Mg

(3D) with different values of site concentration x collapse
onto the same curve when plotted versus 7/x, where T is the
temperature. This argument holds for randomly located
RADs on a continuous space in 3D. It is therefore expected
to hold approximately for a site-diluted lattice if x<<1, but
not necessarily for lattices with higher concentrations of
RADs. This is why dipoles with parallel axes can have an
antiferromagnetic phase at low temperature on a fully occu-
pied simple cubic lattice,'# but appear to have no condensed
phase of any sort on a very dilute lattice.!3 Similarly, the
existence of a spin-glass phase for RADs for x<<1 does not
follow from its existence for x=1.

Our main aim here is to find, by means of the parallel
tempered Monte Carlo (TMC) algorithm,'>!® whether an
equilibrium spin-glass phase exists in a site-diluted system of
RADs in 3D. We also aim to establish, if the spin-glass phase
does exist, whether in the condensed phase (1) there is a
single extended state,'” as in a ferromagnet or in the droplet
model of spin glasses,'® or (2) there are multiple extended
states, as in the XY model in two dimensions (2D) (Ref. 19)
or in the replica symmetry breaking theory of spin glasses.?”

The paper is planned as follows. In Sec. I we specify the
RAD model and describe how we apply the parallel TMC
algorithm.'>!¢ We do this for x=0.35 and x=0.5. Results are
given in Sec. III. The entropy S follows from our data for the
specific heat by numerical integration. It approximately van-
ishes at zero temperature.?! More precisely, S <0.01kz at T
=0. We provide numerical evidence for the existence of an
equilibrium spin-glass phase below a transition temperature
T.. The evidence comes from the behavior of the distribution
of the spin overlap parameter ¢.>>> In the spin-glass phase,
(g% seems to vanish in the macroscopic limit, but only as a
power of system size, in accordance with the existence of
quasi-long-range order. For both x=0.35 and x=0.5, kg7,
=(0.95+0.1)xe,;, where g, is a nearest-neighbor dipole-
dipole interaction energy which is defined in Sec. II. (Within
errors, the value of T, for x=1 we have previously obtained!?
also satisfies this expression.) For T7<0.9T,, dlq|, that is,
the root-mean-square deviation of |g|, fulfills dlg
=0.5(|q|)\T/T,, independently of system size. This result is
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compared with its counterpart for the XY model in 2D. Re-
sults are discussed in Sec. IV.

II. MODEL AND METHOD

We treat systems of magnetic dipoles on simple cubic
lattices. We place a dipole on each lattice site with probabil-
ity x and leave the site unoccupied with probability 1 —x. All
dipoles point along randomly oriented anisotropy axes. With
this model we aim to mimic assemblies of NPs in which
uniaxial anisotropy energies are an order of magnitude larger
than the largest dipole-dipole energy. Then, anisotropy en-
ergy barriers are not so large as to freeze spin reorientations
near the spin-glass temperature, but are sufficiently large to
restrict spins to point “up” or “down” approximately along
the easy magnetization axes. We term this the random-axes-
dipolar (RAD) model. The Hamiltonian is given by

H= —2 > 1fses? (1)

1 ]’
iJ ap

where the first sum is over all occupied sites i and j of a
simple cubic lattice, S{* is the a component of a classical
three-component spin on site i,

Tsﬁ—sd(a/ru) (Oup— 3r“r5/rlj) (2)
r;; is the distance between i and j, g, is an energy, and a is a
nearest-neighbor distance. Each spin points along a ran-
domly chosen direction. These equations can be cast into a
form that is manifestly Ising type by letting d; be (1) a null
vector if the j site is unoccupied and (2) a three-component
unit vector chosen randomly from a spherically uniform dis-
tribution if the j site is occupied, and defining a pseudospin

o==1 for each site, such that szlij(rj. We can then write

1
- 52 Jijoi0;, 3)

where J;;=-2, T“'Bu“uﬁ Thus, the RAD model is an Ising
model whose bonds J are determined by the dipole-dipole
terms Taﬁ and the set of three-component randomly oriented
unit vectors {d}.

From here on, unless we state otherwise, we let kz=1,
where kg is Boltzmann’s constant and give all temperatures
in terms of &, We use periodic boundary conditions. Details
and justification are given in Refs. 12, 14, 16, and 24.

In order to arrive at equilibrium results, we make use of
the parallel TMC algorithm.'> This enables one to circum-
vent large energy barriers that can trap a system’s state. We
apply the TMC algorithm as follows. We run (in parallel)
several identical systems at different temperatures: a system
at temperature T, a second one at Ty+AT, and so on, at
equally spaced temperatures, up to 7,,. We choose T, to be at
least twice as large as what we expect to be the transition
temperature between the paramagnetic and spin-glass phases.
We let each system evolve under the Metropolis MC algo-
rithm for 10 MC sweeps before pairs of systems are given a
chance to exchange their states. More specifically, pairs of
systems at temperatures (7, and Ty+AT), (Ty+2AT and T,
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FIG. 1. (a) (Color online) Plots of ¢ and of S vs T, for x=0.35.
Data points (black) O (for N=605) and (red) X (for N=179) are for
the specific heat, while (black) [J (for N=605) and (red) + (for N
=179) are for the entropy. Errors, &S, for S increase as T decreases,
from 65=0.002 for T=4 to 65=0.004 for 7<<0.1.

+3AT), and so on, are given a chance to exchange states
every 10 MC sweeps, and pairs of systems at temperatures
(To+AT and Ty+2AT), (Ty+3AT and Ty+4AT), and so on,
are given a chance to exchange states at times in between.
Under TMC rules, these chances are as follows. A system at
temperature 7 that is in state 2, and another one at T+ AT in
state 1, exchange states with probability P=1 if E; <E, and
AT>0, but P=exp(—-ABSE), where AB=1/T-1/(T+AT)
and SE=E,—E,, if E,>E, and AT>0.'¢

A sufficiently small value of AT must be chosen in order
to keep exp(—ABJSE) from becoming too small. This will
often be fulfilled if ABAE =1, where AE is the mean energy
difference between two systems at temperatures 7" and T
+AT. The required condition, AT<T/yNc, where N is the
number of dipoles in the system, follows for AT if we re-
place AE by ¢cNAT (we thus define ¢ as the specific heat per
spin). From plots of the specific heat vs T, such as the one
shown in Fig. 1 for systems of 179 and of 605 magnetic
dipoles on lattices with 0.35 of their sites occupied, one can
get upper bounds for AT. (How the data points shown in Fig.
1 were obtained is explained in Sec. III.) Values of AT as
well as of other parameters for all TMC runs are given in
Table 1.

In order to probe for spin-glass behavior, we define, as is
usual, the spin overlap parameter.?>?? First, let

¢=0a)”, 4)
where o' and 0'52) are the pseudospins [defined above Eq.
(3)] on site j of identical twin replicas 1 and 2 of the system.
Clearly,

g=N"2 ¢, (5)
J

is a measure of the spin configuration overlap between rep-
licas 1 and 2. Thus, |g|=1 if either O'J(I ]) for all j or
(r(l)— 0](2) for all j. We also define the moments of ¢, g,
—<|q|"> for k=1, 2, and 4, where (...) stands for an average

which we next specify.
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TABLE I. Simulation parameters. x is the probability that any given site is occupied by a magnetic dipole;
N is the mean number of magnetic dipoles in the system; AT is the temperature step in the TMC runs; T, is
the highest temperature of all systems; N is the number of disordered system pairs; MCS is the number of

tempered Monte Carlo sweeps.

x 0.35 0.35 0.35 0.35
N 22.4 75.6 179.2

AT 0.05 0.05 0.05 0.05
T, 1.0 1.0 1.0 1.0
N, 10000 3000 1250 900
MCS 50000 10° 5100 109

604.8

0.5 0.5 0.5 0.5
32 108 256 864
0.05 0.05 0.05 0.05
1.3 1.3 1.3 1.3

5000 3000 1500 150, 600

50000 50000 10° 10°, 10°

Suppose our TMC runs last for a time #, and assume that,
within the temperature range we are interested in, equilibra-
tion takes place in a time less than #/2. During the TMC
runs, we write, at equally spaced time intervals within the
(t/2,1) range, the spin configuration for each temperature.
We later draw from these written configurations the numbers
for o’}l) that go into Eq. (4). This procedure is repeated for
the same system (that is, for a system with the same aniso-
tropy axes), but starting from different initial conditions.
From this second set of configurations, we draw the numbers
for 0';-2) that go into Eq. (4). A value of ¢ for each time ¢ and
temperature 7 is thus obtained from Eq. (5). We first average
all quantities of interest over ¢ and finally repeat these pairs
of TMC runs a number N, of times for different realizations
of axes orientations, from which the average values we are
reporting are obtained. Values we have used in our TMC runs
for N, and for ¢ (labeled MCS therein) are given in Table 1.

Finally, in order to check that equilibration actually takes
place as assumed, we also calculate the spin overlap ¢, not
between identical twin replicas, but between spin configura-
tions at two different times #, and ¢, of the same TMC run.
We do this for several values of 7, and #; in the neighbor-
hoods of #/2 and ¢, respectively, and average over different
random axes realizations, in order to obtain g,. For ¢ suffi-
ciently large, g;=¢;. We find this is fulfilled for all parameter
values given in Table I, except for (1) x=0.35, N=604.8, and
T=<0.2, and (2) for x=0.5, N=864, and T=<0.35.

III. RESULTS

Plots of the specific heat and of the entropy vs T for
the RAD model are shown in Fig. 1 for x=0.35. The data for
the specific heat follow from numerical derivatives of the
energy with respect to 7. We obtain S from S(7)=In2
+[Te(T")/T'dT’. Our data cover the temperature range (not
all of it shown in Fig. 1) 0.05<T<4. For a numerical inte-
gration, we must extrapolate our data for ¢(7) beyond T=4.
To this end, we use the leading term of an energy expansion
in powers of 1/7, which gives c(T) —A/T?. A fit of the value
of A to our data for ¢(T) at T=4 leads to a AS=0.027 con-
tribution to the entropy from the 7> 4 range. We thus obtain
S(T). 1t is exhibited in Fig. 1. Errors for S(7) come in two
approximately equal pieces: (1) an error of roughly 0.002
from the 4 <T <o range and (2) an error of roughly 0.002,
from errors in the data for the specific, which enter the inte-
gral [Te(T")/T'dT’. We finally obtain $=0.015+0.004 for

T=0.05, and extrapolations below 7=0.05 yield $<0.01 at
T=0. Similarly, we find $<<0.01 at 7=0 for x=0.50.

Our results for ¢, and ¢, follow. Note we use an absolute
value in the definition of ¢;. Recall that Ng,=O(1) in the
paramagnetic phase and diverges at the transition tempera-
ture T,. Above the lower critical dimension d., ¢g,=0(1) in
the droplet model of the spin-glass phase.'® Our data show
that ¢, decreases as N increases, for all nonzero tempera-
tures. Log-log plots of g, vs N are exhibited in Figs. 2(a) and
2(b) for various values of 7. The behavior of g, for T<0.3
and 7=<0.45 for x=0.35 and x=0.5, respectively, is consis-
tent with g, ~ N7, where y is some positive parameter that
depends on 7. This behavior is reminiscent of the XY model
in 2D.!? For higher values of T, g, vs N clearly curves down-
ward, in accordance with a faster than algebraic in N decay,
as one expects for the paramagnetic phase. Log-log plots of
q% are also shown in Figs. 2(a) and 2(b) for various values of
T. Note that ¢,/ q% > 1 for all N and nonzero T, which implies
a nonvanishing uncertainty in |g,|, where ¢,=q/q,, for

7>0.
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FIG. 2. (Color online) (a) Log-log plots of ¢; and of ¢, vs N for
x=0.35 and the shown values of 7. Lines are guides for the eyes.
(b) Same as in (a) but for x=0.5. Some data points for small 7 and
large N are missing because our TMC runs did not reach equilibra-
tion for them.
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0.4 '

FIG. 3. (Color online) (a) Plots of the probability P, vs g,, for
x=0.50 and 7=0.45. @, O, and ¢ are for N=108,256, and 864,
respectively. Lines are guides for the eyes. For clarity, only 30% of
the data points are shown. (b) Same as in (a) but for 7=0.60. For
comparison, a dashed line is shown for (1/m)exp(—¢>/ ), which
ensues for a macroscopic paramagnetic phase.

We next report results for the probability distribution
P(g,). Unless stated otherwise, all data given below are for
a normalized P,(q,), that is, [P(¢,)dq,=1. Recall that in the
paramagnetic phase, because spin-spin correlation lengths
are finite, the central limit theorem implies ¢, is normally
distributed for macroscopic systems. Plots of P, vs g, are
shown in Fig. 3(a) (for T=0.45) and Fig. 3(b) (for 7=0.60),
both for x=0.50. The distribution of g appears to be size
independent for 7=0.45. For T=0.60, on the other hand,
P,(g,) drifts with system size. The drift seems consistent

FIG. 4. (Color online) (a) Plots of the probability distribution P,
Vs ¢,, for x=0.35 and 7=0.3. @, O, and 4 are for N=76, 179, and
6035, respectively. Lines are guides for the eyes. For clarity, only
30% of the data points are shown. (b) Same as in (a) but for
T=0.45. For comparison, a dashed line is shown for (1/)
Xexp(—qf/ ), which ensues for a macroscopic paramagnetic phase.
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with Pq(q,)—>(l/77)exp(—qf/77) as N— o, which would be
in accordance with a paramagnetic phase. Similar remarks
apply to the plots exhibited in Fig. 4(a) (for 7=0.30) and Fig.
4(b) (for T=0.45), both for x=0.35. Clearly, 0.30<T.,
<0.45 for x=0.35, and 0.45<7.<0.60 for x=0.50. For T
<T,, plots of P, vs g, (not shown) become sharply peaked
only as 7— 0. Now, if it turns out that d.=3 for systems of
RADs, then P, (g,) ought to exhibit critical behavior for all
T=T,, more specifically, P,(g,) ought to be size indepen-
dent. This sort of behavior is best summarized by the mean
square deviation of |g,|, A7 =(g;)—(|q,)*.

Plots of Ag vs T/x are shown in Fig. 5(a) (for x=0.35) and
in Fig. 5(b) for x=0.50 for various values of N. Clearly,
curves in Figs. 5(a) and 5(b) differ only slightly, as expected
from the argument given in Sec. I, that variations in 7" and x
have an effect only through 7/x if x<<1. The data points in
both figures suggest A;—> w/2—1 as N—o, for T/x=1.
This is expected for a macroscopic paramagnet, since P,(g,)
is a normal distribution then. For T/x=<0.8,

A, =05\T/x (6)

provides the best fit to the data points shown in Figs. 5(a)
and 5(b). This is in contrast with the behavior, A§—>O as

0.6
0.5

0.4
0.3

o~

<

0.4 0.6 0.8 1.0 2.0
T/x

FIG. 5. (Color online) (a) Plots of A; vs T for x=0.35. (red) @,
(blue) ¢, and (black) [ are for N=604.8,179.2, and 75.6, respec-
tively. The continuous (green) line is for N=22.4. The dashed line is
for macroscopic paramagnet. (b) Same as in (a) but for x=0.50. @
(red), # (blue), and O (black) are for N=864, 256, and 108, re-
spectively. The continuous (green) line is for N=32, and the dashed
line is for 7/2—1. (c) Same as in (a), but for the mean square
relative deviation A§4 of |M|, where M is the magnetic moment of
XY systems of LXL spins in 2D vs T/x, where x=1, for L=4
(green line), L=8 (blue #), L=16 (red @), L=64 (black A), L
=256 (black <), and L=1024 (black X).
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1.0
0.5

T/x

FIG. 6. (Color online) Plots of Afi/ Az(L=4) vs T, where A;(L
=4) is Afl for L=4. All (#) are for x=0.35 and L=12, and all (H)
are for x=0.35 and L=38. All (<) are for x=0.50 and L=12, and all
(O) are for x=0.50 and L=8. Lines are guides for the eyes.

N— o, that one expects for the ordered phase of ferromag-
nets such as the Ising model in two or higher dimensions.
For a more relevant comparison, we show in Fig. 5(c) plots
of the mean square relative deviation Ai,, of |M , where M is
the magnetic moment, of the XY model in 2D. Notice there is
no counterpart in Figs. 5(a) and 5(b) for the data points
shown for rather large systems in Fig. 5(c).

Now, it is hard to see in Figs. 5(a) and 5(b) where curves
merge or cross, near 7/x=0.9. In order to enhance the dif-
ferences between A2 curves for different values of L, we plot
A;/A;(L=4) vs T/x. These plots are shown in Fig. 6 for x
=0.35 and x=0.50. The weak dependence on x is remarkable.
Notice that whereas curves for L=12 and L=8 cross near
T/x=0.95 for x=0.35 and for x=0.50, the same curves cross
the AZ/A;(L:4):1 horizontal line only, if at all, for much
smaller values of 7/x. It thus appears that curves for Ag
increasingly larger system sizes merge or cross at increas-
ingly larger values of 7/x.

We show plots of P,(0) vs N for x=0.35 and various
temperatures in Fig. 7. In the paramagnetic phase, we expect
P,(0)— 1/ as N— o, as follows from a normal distribution
of g, about g,=0. Now, for 7/x=1.0, we see that P,(0)
<1/, but Pq(O) increases as N increases. On the other
hand, for T/x=0.857, P,(0) remains, within errors, constant.
This is again in contrast with the behavior, P (0)—0 as N
— o, that one expects for the ordered phase of ferromagnets
such as the Ising model in two or higher dimensions, but is in
accordance with d.=3. Finally, taking into account all our
observations above, we arrive at our best estimate for T,:
T./x=0.95*0.1.

IV. DISCUSSION

By tempered Monte Carlo calculations, we have studied
systems of RADs in simple cubic lattices in which each site
is occupied by a magnetic dipole with probability x. Systems
sizes, Monte Carlo run lengths, and other details about the
calculations can be found in Table 1. The entropy S as a
function of temperature, which follows from our data for the
specific heat, is shown in Fig. 1 for x=0.35. S approximately
vanishes at zero temperature. More precisely, S<<0.01kp at
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FIG. 7. Plots of P,(qg=0) vs N, for x=0.35, for T/x=1.286 (A),
T/x=1.143 (X) T/x=1.0 (B), T/x=0.857 (@), T/x=0.714 (M),
T/x=0.57 (#), and T/x=0.429, (V).

T=0 for both x=0.35 and x=0.50.?! Note also that a vanish-
ing zero-temperature entropy implies that trapping above the
lowest energy states as 7— 0 occurs only very rarely in our
TMC runs.

We have obtained the spin overlap parameter defined in
Eq. (5). More specifically, we have obtained the mean value
of |g|, which we term g,, and the mean square value of ¢,
which is g,. The plots in Fig. 2(a) (for x=0.35) and in Fig.
2(b) (for x=0.50) suggest both ¢, and ¢, vanish for all non-
zero T as N— . As can be gathered from those plots, both
q%*vN‘y and g¢,~ N7, where y is some positive parameter
that depends on 7, for kzT/x=0.9¢,. This points to quasi-
long-range order. It is reminiscent of the XY model in 2D and
suggests the lower critical dimension d,. of the RAD model is
at or near 3D. However, we have no grounds for taking the
analogy between the XY model in 2D and the RAD model in
3D any further than this. We make no claim on the relation
between the universality classes these systems may belong
to.

We have also studied the probability distribution P,(q,),
where ¢,=q/q;. Within errors, P,(q,) is independent of sys-
tem size at T=T,, as is illustrated in Figs. 4(a) and 3(a) for
kpT/x=0.9¢,. We have also found (not shown) P (g,) to be
independent of system size at lower temperatures. The re-
sults shown in Figs. 5(a) and 5(b) and in Eq. (6), for the
mean square deviation of |g,], A?I, are consistent with a
P,(g,) that is independent of system size for all kgT/x
=0.9¢,. Again, this points to d.=3 for the RAD model and
is in contradistinction to results for the nearest-neighbor ran-
dom bond Ising model in 3D.?
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